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1
METHOD AND APPARATUS FOR
LEARNING-ENHANCED ATLAS-BASED
AUTO-SEGMENTATION

This application is a divisional application of application
Ser. No. 13/782,154, filed Mar. 1, 2013, which is incorpo-
rated herein by reference.

INTRODUCTION

There is a need in the art for improving the efficiency and
accuracy of atlas-based auto-segmentation (ABAS) of
images. For example, with respect to medical images, struc-
ture contouring or segmentation is extremely important for
radiotherapy planning. Although manual contouring by
human experts is still the common standard for high quality
segmentation in clinics, manual contouring is tedious, time-
consuming and suffers from large intra- and inter-rater
variability.

Automated segmentation of images such as computed
tomography (CT) images has been proven to be a very
challenging problem due to image noise and other artifacts,
as well as limited image contrast for most soft-tissue struc-
tures. In recent years, ABAS techniques have shown prom-
ise as a solution. However, the inventor believes that the
accuracy of existing ABAS techniques can still be improved
upon to render ABAS more useful in practice and more
widely accepted.

The basic principle of ABAS is to perform segmentation
of a subject image using one or multiple already-segmented
images (e.g., from previously treated patients). These
already-segmented images together with their annotations
(e.g., structure label maps or structure surfaces) are known
as atlases. After aligning a new subject image to an atlas
image through image matching (also known as image reg-
istration), structure labels defined on the atlas can be mapped
to the patient image using the computed image transforma-
tion, which then produces structure labels for the patient
image. The whole process can be fully automated since
many automated image registration methods exist. Based on
this principle, it can be expected that the accuracy of ABAS
heavily depends on the image registration method that is
employed. However, regardless of which image registration
algorithm is used, the accuracy of ABAS is also dependent
on how similar a chosen atlas is comparing to the patient
image. Furthermore, while the use of multiple atlases when
performing ABAS helps mitigate this effect, the inventor
believes that ABAS can be further improved as described
herein.

For example, even with multi-atlas ABAS, the segmen-
tation accuracy is still heavily dependent on image registra-
tion between each atlas image and the subject image. Fur-
thermore, it should be understood that ABAS (whether
multi-atlas ABAS or single-atlas ABAS) is fundamentally
different than model-based segmentation, such as the model-
based segmentation described by the published PCT patent
application WO 2011/110960. With model-based segmen-
tation, training data such as atlas images are registered to
each other to develop a model of a structure of interest. This
model, which aims to characterize the shape variations of the
structure, is then used during the segmentation process while
the atlas images are not. Thus, with model-based segmen-
tation, an atlas image is not registered to the subject image.
Instead, only the developed shape model is registered to the
subject image. By contrast, with ABAS, each atlas image is
registered with the subject image, with the segmentation
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process then operating to map the structure labels from each
atlas image to the subject image based on each atlas image-
to-subject image registration.

Independent of image registration, segmentation can also
be formulated as a classification problem, where the goal is
to construct an image classifier that can assign the correct
class (structure) label to each point of a given image. Image
point classification by itself is also a hard problem, espe-
cially if it desired for one classifier to be able to determine
the correct label of an arbitrary voxel in a full 3D image.
Thus, the inventor discloses various embodiments that com-
bine the strengths of both ABAS and image classification in
a hybrid approach.

Toward this end, the inventor discloses an auto-segmen-
tation method comprising: (1) performing ABAS on a plu-
rality of points in a subject image using an atlas image to
generate first data representative of a structure in the subject
image, (2) applying a plurality of points in the subject image
to a learning-enhanced classifier to generate second data
representative of the structure in the subject image, and (3)
combining the first data with the second data to generate
third data representative of the structure in the subject
image, wherein the method steps are performed by a pro-
cessor. In a preferred embodiment, a plurality of atlas
images can be used such that the ABAS is multi-atlas ABAS.

The inventor also discloses an auto-segmentation appa-
ratus comprising a processor, wherein the processor is
configured to (1) perform ABAS on a plurality of points in
a subject image using an atlas image to generate first data
representative of a structure in the subject image, (2) apply
a plurality of points in the subject image to a learning-
enhanced classifier to generate second data representative of
the structure in the subject image, and (3) combine the first
data with the second data to generate third data representa-
tive of the structure in the subject image. Also, as noted
above, a plurality of atlas images can be used in a preferred
embodiment such that the ABAS is multi-atlas ABAS.

Further still, the inventor discloses a computer program
product for auto-segmentation comprising a plurality of
instructions that are resident on a non-transitory computer-
readable storage medium and executable by a processor to
(1) perform ABAS on a plurality of points in a subject image
using an atlas image to generate first data representative of
a structure in the subject image, (2) apply a plurality of
points in the subject image to a learning-enhanced classifier
to generate second data representative of the structure in the
subject image, and (3) combine the first data with the second
data to generate third data representative of the structure in
the subject image. Once again, in a preferred embodiment,
the ABAS can be multi-atlas ABAS.

According to another aspect, the inventor discloses a
training method comprising: (1) for each of a plurality of
sets of atlas data, collecting a plurality of training samples
from the atlas data, each atlas data set comprising (i) an atlas
image, the atlas image comprising a plurality of data points,
and (ii) a plurality of structure labels for a plurality of the
atlas image data points, and (2) applying the collected
training samples to a machine learning algorithm to generate
an automated structure classifier, the structure classifier
being configured to determine a structure label for each of a
plurality of points of a subject image, and wherein the
method steps are performed by a processor.

These and other features and advantages of the present
invention will be apparent to those having ordinary skill in
the art upon review of the teachings in the following
description and drawings.
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BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 depicts an exemplary embodiment of the invention
for training an automated structure classifier using a
machine learning algorithm.

FIG. 2 depicts an exemplary process flow for execution by
a processor to train an automated structure classifier using a
machine learning algorithm.

FIG. 3 depicts an example of a sample image region from
which to collect samples for training the classifier.

FIG. 4 depicts an exemplary embodiment of the invention
for auto-segmenting a subject image using a combination of
ABAS and an automated trained structure classifier.

FIG. 5 depicts an exemplary process flow for execution by
a processor in accordance with an exemplary embodiment to
auto-segment a subject image using a combination of ABAS
and an automated trained structure classifier.

FIG. 6 depicts an exemplary process flow for execution by
a processor in accordance with the embodiment of FIG. §
where multiple atlases are used.

FIGS. 7(a)-(c) depict examples of images generated
through multi-atlas ABAS.

FIG. 8 depicts a table for rib cage segmentation results
using multi-atlas ABAS with and without learning enhance-
ment.

FIG. 9 depicts an exemplary process flow for execution by
a processor in accordance with another exemplary embodi-
ment to auto-segment a subject image using a combination
of ABAS and an automated trained structure classifier.

FIG. 10 depicts an exemplary process flow for execution
by a processor in accordance with yet another exemplary
embodiment to auto-segment a subject image using a com-
bination of ABAS and an automated trained structure clas-
sifier.

DETAILED DESCRIPTION

Various embodiments will now be described that relate to
both training an automated structure classifier using a
machine learning algorithm and performing learning-en-
hanced ABAS on a subject image using one or more atlas
images and the automated structure classifier.

It should be understood that the images processed using
the techniques described herein can be take any of a number
of forms. In various exemplary embodiments, the images
can be medical images such as CT images. However, it
should be understood that images of different types can be
employed. For example, image types such as magnetic
resonance (MR) images and ultrasound images could also be
processed using the techniques described herein.

1. Training an Automated Structure Classifier Using
Machine Learning:

FIG. 1 depicts an exemplary embodiment for training an
automated structure classifier to detect one or more struc-
tures of interest within an image. As shown in FIG. 1, a
processor 100 can be configured to implement processing
logic 104 whereby one or more atlas images 106 are applied
to a machine learning algorithm to train an automated
structure classifier. The one or more atlas images 106
preferably include structure classification data that identifies
the structure of interest in the one or more atlas images 106.
The processing logic 104 operates to produce a trained
structure classifier 108, where this classifier 108 is config-
ured to process data points of an image to automatically
classify whether those points belong to a structure of interest
or not. The classifier 108 can take any of a number of forms,
such as a set of machine-executable rules. Furthermore, if
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desired by a practitioner, a trained classifier 108 can be
configured to process multiple points of an image in parallel,
although this need not be the case.

It should be understood that the atlas images shown by
FIG. 1 can be either two-dimensional (2D) images or
three-dimensional (3D) images. With a 2D image, the image
data points can be referred to as pixels. With a 3D image, the
image data points can be referred to as voxels. For the
purposes of simplicity, the examples described herein will be
for applications to 3D images, in which case the image
points are described as voxels. However, it should be
understood that the techniques described herein can be
equally applied to 2D images for both training a classifier
and auto-segmenting an image. Furthermore, for purposes of
simplicity, the examples described herein will be described
where only one structure is to be classified in an image.
However, it should also be understood that the techniques
described herein for both training a classifier and for auto-
segmenting an image can also be applied to classity multiple
structures in a subject image.

The processor 100 can be any processor with sufficient
computational capabilities to implement the machine learn-
ing features described herein. It should be understood that
processor 100 may comprise multiple processors, optionally
distributed via a network. The programming instructions for
implementing the processing logic 104 can be resident on a
non-transitory computer-readable storage medium (e.g.,
memory 102) for access and execution by the processor 100.
It should be understood that the memory 102 may comprise
multiple memory devices, optionally multiple distributed
memory devices and/or memory devices of different types.

FIG. 2 depicts an exemplary process flow for the pro-
cessing logic 104. The example of FIG. 2 applies a machine
learning algorithm to data from multiple atlas images 106
(and their associated classification data) to produce a trained
structure classifier that can process a subject image to
perform auto-segmentation thereon for the structure of inter-
est. The classification data for the atlas images 106 can be
estimates of where the structure of interest is located in the
each atlas image 106. This classification data can take any of
a number of forms. For example, the classification data can
be labels that are associated with voxels of each atlas image
106 to thereby identify whether those atlas image voxels are
classified as the structure of interest or not.

The atlas images 106 chosen for the classifier training are
preferably atlas images for which there is a high degree of
confidence as to the accuracy of their corresponding classi-
fication data. Typically, it is expected that manually con-
toured atlas images 106 will be chosen for application to
train the classifier.

At step 200, the processor collects a plurality of sample
voxels from the atlas images 106 to use for training the
classifier. While it should be understood that the process
flow 104 can be configured to operate on all of the voxels of
each atlas image 106, the inventor believes that a lesser
amount of the atlas image voxels can be employed to
improve computational efficiency while still retaining accu-
racy.

These training samples can be selected as a subset of the
atlas image voxels which are within a defined proximity of
the structure of interest (as defined by the classification data
for each atlas image 106).

FIG. 3 depicts an example of how training samples can be
collected for a single structure. The example of FIG. 3 shows
a structure of interest (parotid) on a 2D slice of a 3D atlas
image. Contour 304 shows the border of the structure (every
voxel inside contour 304 belongs to the parotid, and every
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voxel outside belongs to “background”). Contours 302 and
306 delineate a region within a certain distance (e.g., 8 mm
in this example) to the border of the structure defined by
contour 304. This distance can be a parameter for the process
flow 104 that can be set by the user. A smaller distance
allows the training to be focused on voxels close to the
structure border—a region where ABAS segmentation error
is most likely to occur. But it is preferred that the distance
still be large enough to match a possible error range of
ABAS segmentation results. Once the distance threshold is
set, step 200 can operate to collect positive training samples
for the structure classifier from the set of voxels between
contours 304 and 306 (i.e., voxels that are known to belong
to the structure of interest). Any voxels between contours
302 and 304 can serve as negative training samples (i.e.,
voxels that are known to not belong to the structure of
interest). It should be understood that while FIG. 3 shows a
2D slice, these principles can be equally applied in 3D space.

Even if one limits the training sample collection to a small
neighborhood of a structure between contours 302 and 306,
this neighborhood region can easily have tens-of-thousands
of voxels for a single image. Because voxels close to each
other in the image space are expected to be highly corre-
lated, it is not necessary to use all the voxels between
contours 302 and 306 in the training. Using fewer voxels
lightens the computational load of process flow 104. Thus,
in an exemplary embodiment, step 200 can operate to collect
the training samples by taking a certain amount of random
samples from all the positive voxels in the training sample
candidate set and also a certain amount of random samples
from the negative voxels in the training sample candidate
set. This random sampling need not be uniform. For
example, it is preferred to take more samples closer to the
structure border (contour 304) and to take fewer samples
further away. Also, most machine learning algorithms prefer
that the numbers of positive and negative samples are
balanced. Thus, in instances where such a machine learning
algorithm is used, step 200 can be configured to take the
same amount of positive and negative samples from each
atlas for each structure. Suppose that step 200 takes K
positive samples and K negative samples from each atlas,
and suppose N atlases are employed; in such a situation, the
total number of training samples for the learning algorithm
would be 2KN. If the classifier in question is meant to be a
multi-structure classifier, then step 200 can be configured to
collect KN samples for each structure class, and then collect
roughly KN samples from their background.

At step 202, the processor computes a plurality of attri-
butes for the collected training samples. These attributes can
be used by the machine learning algorithm as part of its
classification task. The trained classifier will make decisions
about the class label of an image voxel based on measure-
ment data collected at that voxel location. It is believed that
voxel classification based solely on the image intensity value
of that voxel will suffer from undue inaccuracy because
different structures often have very similar intensity values
in an image such as a CT image. To build a better voxel
classifier, step 202 computes multiple measurements at each
voxel location of the training samples in order to get a more
complete characterization of the local image appearance and
relevant context information. These measurements form the
data vector for each image voxel, which can be called the
attributes or features of the voxel.

A variety of image features can be computed at each
image voxel location. It is expected that the more attributes
used to train the classifier, the more accurate the trained
classifier will perform; with the tradeoft being that the use of
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a large number of attributes is expected to result in an
increase in computation time. Examples of attributes that
can be computed at step 202 for the training voxels can
include:

Image intensity value I—either the raw image intensity
value or intensity after some pre-processing such as
de-noising or intensity normalization.

Image location—the (X, y, z) coordinates of the voxel. The
coordinates can be useful if being normalized first with
respect to a common reference coordinate system. To
achieve this, one can first register every image involved
(either the atlas images or a new subject image) to a
common template (where any one of the atlases can be
chosen as the template) by applying linear image
registration, and then recording the voxel coordinates
after the linear mapping is applied.

Image gradient (I, [, L)=V(G,*I) and gradient magni-
tude |[V(G4*1)||, where G denotes a Gaussian smooth-
ing filter with a kernel size of o. Typically, it is
beneficial to compute the image gradient features at
multiple scales, i.e., multiple o values are applied.

Eigen-values of the image Hessian matrix H=V*V(G_*I),
which are again computed at different scales.

Image texture measures, such as energy, entropy, contrast,
homogeneity, and correlation of local co-occurance
matrix as defined in M. Tuceryan and A. K. Jain,
“Texture Analysis”, In The Handbook of Pattern Rec-
ognition and Computer Vision (2nd Edition), by C. H.
Chen, L. F. Pau, P. S. P. Wang (eds.), pp. 207-248,
World Scientific Publishing Co., (1998).

Local image patches of varying sizes. For example, one
can directly take the intensity values or normalized
values of a local 5x5x5 neighborhood of the voxel to
get 125 feature values.

Many features proposed in the computer vision literature
can also be used, such as Haar features (see Viola and
Jones, “Rapid object detection using a boosted cascade
of simple features”, Computer Vision and Pattern Rec-
ognition, (2001)), HOG (see Dalal, N., Triggs, B.,
Schmid, C.: Human detection using oriented histo-
grams of flow and appearance. Computer Vision-
ECCV, 428-441 (2006)), SIFT (see Lowe, D. G.
Object recognition from local scale-invariant features.
Proceedings of the International Conference on Com-
puter Vision. 2. pp. 1150-1157 (1999)), Local Binary
Pattern (see Ojala, T., Pietikdinen, M., Harwood, D.: A
comparative study of texture measures with classifica-
tion based on feature distributions. Pattern Recognit.
29(1), 51-59 (1996) and Ojala, T., Pietikdinen, M.,
Maenpad, T.: Multiresolution gray-scale and rotation
invariant texture classification with local binary pat-
terns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7),
971-987 (2002)), and others. These features were
mostly proposed for 2D image analysis. As such, if step
202 is being applied to 3D images, these attributes
should be extended to 3D or computed in each 2D
image slice that contains the voxel under consideration.

It should be understood that step 202 need not compute all

of these attributes, and that other attributes could also or
alternatively be employed. Furthermore, it should be under-
stood that step 202 can be omitted from the process flow 104
if the atlas image data already includes the attributes for the
atlas image voxels that are to be used by the machine
learning algorithm.

At step 204, the collected training samples and the com-

puted attributes are applied to a machine learning algorithm
to produce the trained structure classifier 108, which as
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noted below can take the form of a predictor function to
automatically classifying a given input voxel of a subject
image. The machine learning algorithm can be a supervised
learning algorithm. Supervised learning is a branch of
machine learning that seeks to infer a prediction model
given a set of training data. Each individual sample of the
training data is a pair consisting of a data vector (such as the
computed attributes and an original voxel data) and a desired
output value. The supervised learning algorithm analyzes
the training data and produces a predictor function. This
predictor function can be called a classifier when the output
is discrete (such as a list of structure labels as the exemplary
embodiments discussed herein). The predictor function is
preferably configured to predict the correct output value for
any valid input object, which thus requires the supervised
learning algorithm to generalize from the training data to
unseen situations in a “reasonable way”.

A preferred machine learning algorithm that can be
employed at step 204 is the random forests (RF) machine
learning algorithm (see Breiman, L.eo, “Random Forests”,
Machine Learning, 45 (1): 5-32, 2001, the entire disclosure
of which is incorporated herein by reference), which the
inventor found to be very robust and accurate for structure
classification with respect to medical images.

The RF algorithm operates to produce a trained classifier
108 that is a collection of decision trees. Each decision tree
is a set of decision rules organized in a tree-like structure.
Each node of the tree applies a decision rule, which is often
called a test function or a split function. Each test function
takes an attribute or feature value as input and produces a
binary (yes/no) output. Based on the yes/no answer, the
input data is sent to either the left or the right child-node of
the current node. The child node will run another test based
on a new feature value. This is repeated until the so-called
“leaf-node” is reached. A “leaf-node” is a tree node without
“children” nodes. Each leaf-node has a class/structure label
associated with it but sometimes it can also be a probability
value indicating the likelihood of belonging to a particular
class/structure. The rules can be expressed as test functions
with binary outputs, e.g.:

1, if gy <v; <b;

hvi, a;, by) = { '

0, otherwise

where v, denotes the i-th feature value, and a,, b, are two
thresholds. Thus, with a trained classifier 108 that was
trained using the RF algorithm, the classifier 108 can take
the form of an ensemble of decision trees, where each tree
is a set of decision rules organized in a tree or flowchart-like
structure, where each internal (non-leaf) node denotes a test
on an attribute (i.e., a decision rule), each branch represents
an outcome of the test, and each leaf (or terminal) node holds
a class label.

During step 204, the trees can be built in parallel if desired
since each tree is trained independent of the others. The
training samples are used by the RF algorithm to “learn” the
tree, i.e., to decide which decision rule to use at each internal
tree node. For the RF algorithm, each tree is built using a
random subset of the training data such that different trees
are highly uncorrelated. Once training samples are collected
and their attributes are computed for a tree, the tree is built
recursively by adding one node at a time. At each node, the
RF algorithm aims to find the best decision rule that most
efficiently splits the training data arriving at the current
node. In the case of binary classification, “best splitting”
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means that each branch of the node should contain as many
samples from the same class as possible. Thus, the training
or learning process with the RF algorithm aims to determine
which feature to use at the current node and what threshold
values to apply to best split the training data. With the RF
algorithm, only a small, random subset of all features are
considered at each node, and the “best” feature is selected
among this random subset instead of using all features. This
randomization again aims to make the trees as independent
as possible. Each newly added node splits the incoming
(training) data into two branches (two subsets), and each
subset will be tested again at the subsequent child node.
Thus, each (non-leaf) node can have two children node. The
tree continues growing until the training data arriving at
each child node all belong to the same class. The child node
then becomes a leaf node of the tree, and the class label of
the training data arrived at the child node becomes the label
of that leaf node.

There are a number of RF algorithm implementations that
are publicly-available, for example the Weka machine-
learning software package is available online, and it includes
an RF algorithm software package. These software packages
also include known interfaces through which training
samples can be applied to the machine learning algorithm.
Moreover, the trained classifier 108 produced by such soft-
ware packages can take a form such as a text file that
expresses the decision tree as machine-executable rules.

The RF algorithm can thus naturally handle multiple
classes, i.e., one classifier to classify several structures (plus
the background). The output of a RF classifier can be a
probability estimation of which class the input data belongs
to, which is also preferred over a hard decision as some other
learning algorithms would produce. In addition, the RF
algorithm is fast in both classifier training and classifier
application, and it can deal with very large dimensions of
input data.

However, it should be understood that other machine
learning algorithms could also be employed at step 204 if
desired by a practitioner. Examples of machine learning
algorithms that can be employed at step 204 include those
described in Witten, 1. H., Frank, E., Hall, M. A.: Data
Mining: Practical machine learning tools and techniques.
Third Edition, Morgan Kaufmann Publishers (2011), the
entire disclosure of which is incorporated herein by refer-
ence, such as the Support Vector Machine (SVM) or Ada-
Boost machine learning algorithms.

It should be understood that the process flow of FIG. 2 can
be performed “off line” relative to an auto-segmentation
operation to be performed on a subject image. That is, the
classifier training need only be performed once after the
desired atlas images 106 are collected. The resultant trained
classifier 108 can then be stored and applied during later use
in connection with auto-segmentation of a subject image.

II. Learning-Enhanced ABAS:

FIG. 4 depicts an exemplary embodiment for performing
learning-enhanced ABAS that uses a trained classifier 108.
As shown in FIG. 4, a processor 400 can be configured to
implement processing logic 404 whereby a new subject
image 408 is auto-segmented using one or more atlas images
406 to identify one or more structures of interest in the
subject image 408. The processing logic 404 operates to
generate a segmentation result 410 for the subject image
408, where this segmentation result includes classification
data corresponding to estimates of where the one or more
structures of interest are located in the subject image 408.
This classification data can take any of a number of forms.
For example, the classification data can be labels that are
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associated with points of the subject image to thereby
identify whether those subject image points are classified as
the structure of interest or not. It should be understood that
the images shown by FIG. 4 can be either two-dimensional
(2D) images or three-dimensional (3D) images.

The processor 400 can be any processor with sufficient
computational capabilities to implement the auto-segmen-
tation features described herein. It should be understood that
processor 400 may comprise multiple processors, optionally
distributed via a network. The programming instructions for
implementing the processing logic 404 can be resident on a
non-transitory computer-readable storage medium (e.g.,
memory 402) for access and execution by the processor 400.
It should be understood that the memory 402 may comprise
multiple memory devices, optionally multiple distributed
memory devices and/or memory devices of different types.

Furthermore, it should be understood that the atlases 406
can be, but need not be, the same atlases 106 used to train
the classifier. Moreover, the processor 400 and memory 402
can be the same processor 100 and memory 102 used for
training the classifier; but this also need not be the case.

FIG. 5 depicts an exemplary process flow for the pro-
cessing logic 404. The example of FIG. 5 is a hybrid
approach that combines the results of both ABAS and
auto-segmentation by a trained classifier to generate an
overall auto-segmentation result for a subject image 408.

At step 500, the processor performs ABAS on the subject
image 408 using one or more atlas images 406. Any known
technique for ABAS can be employed at step 500; for
example, the ABAS technique described by Han, X., Hooge-
man, M. S., Levendag, P. C., Hibbard, L. S., Teguh, D. N.,
Voet, P, Cowen, A. C., Wolf, T. K.: Atlas-based auto-
segmentation of head and neck CT images. In: Metaxas D.
etal. (eds.) MICCAI 2008, LNCS 5242, 434-441 (2008), the
entire disclosure of which is incorporated herein by refer-
ence, can be employed. Step 500 results in the generation of
structure label estimates 502. These label estimates can be
labels that are associated with points of the subject image
408 to identify whether those subject image points are
classified as belonging to the structure(s) of interest or not.

At step 504, the processor uses the ABAS structure label
estimates 502 to identify which points of the subject image
408 are to be further analyzed using the trained classifier
108. To improve computational efficiency and reduce the
complexity of the trained classifier 108 that is needed, it is
preferred that only a subset of the voxels of the subject
image 408 be applied to the trained classifier 108. Any of a
number of techniques can be used to select this subset of
subject image voxels. For example, criteria can be defined
for assessing whether the ABAS label for a subject image
voxel is ambiguous, and then voxels for which the structure
labels are ambiguous can be included in the subset.

As an example of such ambiguity criteria, in instances
where data is available that is indicative of the accuracy
estimate of the structure label estimates 502, this estimated
accuracy data can be used to judge which subject image
voxels are to be selected at step 502 (e.g., selecting subject
image voxels for which the ABAS structure label is esti-
mated to have an accuracy of X % or below such as 50%).
Such voxels can be characterized as ambiguous, and it is
believed that the trained classifier can be used to help resolve
some of this ambiguity.

As another example of such ambiguity criteria, in
instances where multiple atlases were used for the ABAS
(where each atlas was registered with the subject image 408
to create a label map, and where these label maps are fused
to create the structure label estimate 502), the subset selec-
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tion can be configured to select ambiguous subject image
voxels by identifying the subject image voxels for which
there was a disagreement regarding classification among the
various label maps used to generate the structure label
estimate 502.

As yet another example of such ambiguity criteria, the
subset can be selected by defining a proximity around the
structure border from the structure label estimates 502, and
then selecting the subset as the subject image voxels that lie
within this proximity. Given that the most ambiguity (or at
least the most material ambiguity) is expected to lie near the
structure border, such a technique can help focus the trained
classifier on the voxels that are most interest.

These and other techniques can be used to select the
subset of subject image voxels to be applied to the trained
classifier 108.

Furthermore, if necessary, at step 504, the processor can
compute any attributes that are to be used by the trained
classifier 108. Thus, step 504 can operate to compute the
attributes that were computed at step 202 for the training
technique. Thus, the points identified at step 504 can include
the computed attributes for such points.

At step 506, the processor applies the points identified at
step 504 (including computed attributes) to the trained
structure classifier 108. The trained classifier has been
trained as discussed above to determine a structure label for
a given input voxel based on a plurality of attributes for the
input voxel. Thus, the operation of step 506 will result in the
creation of classification data 508 for the selected subset of
subject image voxels, where this classification data identifies
whether each subject image voxel of the selected subset
belongs to the structure of interest or not. Once again, this
classification data 508 can take the form of a structure label
map for the subset of subject image voxels.

Because the trained classifier 108 is not perfect, it is
preferred that the final decision for each voxel’s structure
classification should be based on both the ABAS classifica-
tion 502 and the trained classifier classification 508. Thus, at
step 510, the processor combines the classification data 502
and 508 from ABAS and from the trained classifier 108 to
generate final classification data 512 (where this classifica-
tion data represents the final segmentation result to identify
the structure classification labels for the subject image
voxels). There are many ways to perform this combination
at step 510. For example, majority voting between the
classification data 502 and 508 can be employed (although
if only one atlas is used for the ABAS structure labeling, a
tiebreaking mechanism would need to be implemented). As
another example, if the trained classifier 108 produces a hard
decision, one can take its result 508 as another label map,
and perform a label fusion as between the label maps 502
and 508. For example, if ABAS and the trained classifier 108
provide a probability estimation for its structure labeling
(such as when a RF classifier is used), one choice is to
compute a final structure probability (P) as a weighted
average of the two probability estimations—one from the
ABAS label data (P;) and one from the trained classifier
label data (P,):

P=w;P;+wPc, and wy+w~=1.

M

The two weights (w, and w,) can be equal or can be
manually or automatically adjusted. The optimal weights
may also be automatically determined based on a training
procedure such as cross-validation. Once the structure prob-
ability is computed for every voxel, the final structure label
for classification data 512 can be found by thresholding P at
0.5. As yet another example, the STAPLE method described
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by Warfield, S. K., Zou, K. H., Wells, W. M.: Simultaneous
truth and performance level estimation (STAPLE): An algo-
rithm for the validation of image segmentation. IEEE Trans-
actions on Medical Imaging 23(7), 903-921 (2004), the
entire disclosure of which is incorporated herein by refer-
ence, can be used to perform the combination operation at
step 510.

Because of large anatomical variations that can exist
between two arbitrary patients, it is typically difficult to get
satisfying segmentation results using ABAS with a single
atlas, especially if one atlas is used for all new patients. A
common approach to improve segmentation accuracy of
ABAS is to use multiple atlases (see Rohlfing, T., Brandt, R.,
Menzel, R., Maurer, C. R. Jr.: Evaluation of atlas selection
strategies for atlas-based image segmentation with appli-
cation to confocal microscopy images of bee brains. Neu-
rolmage 21(4), 1428-1442 (2004); Rohlfing T., Brandt, R.,
Menzel, R., Russakoff, D. B., Maurer, C. R. Jr.: Quo Vadis,
Atlas-based segmentation? In: Suri, J., Wilson, D., Laxmi-
narayan, S. (eds.) The Handbook of Medical Image Analy-
sis. Kluwer (2005); Heckemann, R. A., Hajnal, J. V., Aljabar,
P., Rueckert, D., Hammers, A.: Automatic anatomical brain
MRI segmentation combining label propagation and deci-
sion fusion. Neurolmage 33(1), 115-126 (2006); Klein, S.,
van der Heide, U. A., Lips, 1. M., van Vulpen, M., Staring,
M., Pluim, J. P. W.: Automatic segmentation of the prostate
in 3D MR images by atlas matching using localized mutual
information. Med. Phys. 35(4), 1407-1417 (2008); Han, X.,
Hoogeman, M. S., Levendag, P. C., Hibbard, L. S., Teguh,
D. N., Voet, P, Cowen, A. C., Wolf, T. K.: Atlas-based
auto-segmentation of head and neck CT images. In: Metaxas
D. et al. (eds.) MICCAI 2008, LNCS 5242, 434-441 (2008),
the entire disclosures of which are incorporated herein by
reference.

FIG. 6 depicts an exemplary embodiment showing the use
of multiple atlases 406 to perform ABAS, and where the
ABAS segmentation results are combined with the segmen-
tation results from the trained classifier 108 to generate the
final segmentation results 510. With this multi-atlas ABAS
strategy, each of the available atlases 406 is first applied (i.e.,
image registration at step 600 and structure label mapping at
step 602) separately to get an independent classification data
of the given image for each atlas 406. These multiple
segmentation results (label maps) from the different atlases
are then combined at step 604 to get a consensus ABAS
segmentation for the structure of interest. Step 604 can be
referred to as label fusion (similar to step 510). As with step
510, any of a number of label fusion techniques can be
employed to combine the individual atlas label maps into the
resultant ABAS label map 502. The simplest label fusion
approach can be majority voting. With a majority voting
label fusion technique, at each voxel of the new image, each
atlas label map essentially casts a vote regarding what
structure or non-structure (“background”) the voxel belongs
to. The final label of the voxel can then be determined as the
one label that has the most votes. For the binary case where
the label value is either 1 (for being inside the structure) or
0 (for being in the background), the majority voting can also
be computed by taking the average of all the labels at each
voxel and then assigning the voxel to either the structure of
the background depending on whether the average is higher
or lower than 0.5. Since the average values are between 0
and 1, they can be considered as a probabilistic estimation
of'the structure label. Majority voting or simple averaging is
effective in eliminating random errors in the individual atlas
segmentation results. Other more complex label fusion
methods can be employed at step 604, such as the STAPLE
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method noted above. These methods aim to assign optimal,
non-equal weights to different atlases based on some intel-
ligent estimation of the performance or accuracy of each
individual atlas. Once again, any of these label fusion
method can be used at step 604.

FIGS. 7(a)-(c) depict an example of multi-atlas ABAS
segmentation results. FIG. 7(a) shows the estimated struc-
ture borders from different atlas label maps (where the
structure is a right parotid gland) as contours 700. FIG. 7(5)
generally indicates where these different atlas label maps
disagree as region 702. FIG. 7(c) shows how the various
atlas label maps can be combined to generate a structure
probability map via label fusion techniques.

Once the multiple atlas label maps are combined to
generate the ABAS classification data 502, the process flow
of FIG. 6 can proceed as previously described in connection
with FIG. 5.

Several experiments have been performed which indicate
that the learning-based enhancement described herein can
greatly improve the segmentation accuracy of multi-atlas
ABAS. In one study, ABAS and learning-enhanced ABAS
was applied to auto-segment the rib cage from lung cancer
patient images.

In this experimentation, 15 CT images from 15 different
patients were collected. The rib cage in each image was
manually segmented by human experts. [eave-one-out
cross-validation was ran to test the performance of the FIG.
6 embodiment, where for each patient the remaining 14
datasets were used as the atlases to run multi-atlas ABAS
and to train a RF voxel classifier for the ribcage. Two
auto-segmentation results were obtained for each patient—
one from running multi-atlas ABAS itself with majority
voting as the label fusion method, and the second using the
learning-enhanced label fusion as described in connection
with FIG. 6. For the learning-enhanced label fusion, the final
structure probability was computed using equation (1) above
with equal weight for the two terms. The accuracy of each
auto-segmentation result was evaluated against the given
manual segmentation for each patient and measured by the
Dice overlapping coefficient, which is the ratio of the
volume of the overlapped region between the auto- and the
manual-segmentation results to the average volume of the
two segmentation results. The results of these experiments
are summarized in FIG. 8. As can be seen from the data in
the table of FIG. 8, learning-enhanced label fusion greatly
improves the segmentation accuracy of the rib cage for
multi-atlas ABAS.

While FIGS. 5 and 6 describe exemplary embodiments
for performing learning-enhanced ABAS, it should be
understood that alternate embodiments can be employed.
For example, as indicated above, a practitioner can choose
to use the trained classifier to classifier all voxels of a subject
image 408, as shown by FIG. 9. Thus, in the embodiment of
FIG. 9, step 504 is omitted, and at step 900 the trained
classifier 108 operates on all of the voxels of the subject
image 408. In such an embodiment, any necessary attributes
of'the subject image voxels may need to be computed for use
by the classifier 108. At step 510, the classification data 502
and 902 is combined as described above to generate the final
segmentation results 904.

As another example, in a multi-atlas ABAS embodiment,
the trained classifier 108 can be configured to operate
independently on subsets of each individual atlas label map
generated at steps 602, as shown by FIG. 10. In FIG. 10, step
1000 is performed on each atlas label map generated at step
602. Thus, if an ambiguity criteria is used to select the
subsets, step 1000 will results in the ambiguous voxels from
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each of the atlas label maps being independently applied to
the trained classifier 108 at step 1002 to yield different
trained classifier label maps 1004 for each atlas. At step
1006, the processor can combine the different ABAS label
maps generated at step 602 and the different trained classifier
label maps 1004 to yield the final segmentation result 1008.
The combination operation at step 1006 can use any of the
fusion techniques described above for steps 510 or 604.

While the present invention has been described above in
relation to its preferred embodiments, various modifications
may be made thereto that still fall within the invention’s
scope. Such modifications to the invention will be recog-
nizable upon review of the teachings herein. Accordingly,
the full scope of the present invention is to be defined solely
by the appended claims and their legal equivalents.

What is claimed is:
1. A method for training a classifier, the method compris-
ing:
receiving a predetermined threshold distance;
selecting, with a processor, a plurality of training samples
from an atlas image having at least one pre-identified
structure of interest, wherein the atlas image includes a
plurality of image data points, wherein the plurality of
training samples are randomly selected from image
data points located within the predetermined threshold
distance from a contour of the structure of interest;

determining, with the processor, a set of image attributes
associated with each selected training sample; and

applying, with the processor, the selected training samples
and the image attributes associated with the selected
training samples to a machine-learning algorithm to
generate a structure classifier, the structure classifier
being configured to determine a structure of interest in
a subject image.

2. The method of claim 1, wherein selecting a plurality of
training samples further includes identifying a region sur-
rounding the contour of the structure of interest, and ran-
domly selecting the plurality of training samples from the
region, wherein boundaries of the region are within the
predetermined threshold distance from the contour of the
structure of interest.

3. The method of claim 1, wherein the set of attributes
includes at least two members of the group consisting of an
image intensity, an image location, an image gradient and
gradient magnitude, a plurality of eigen-values of a Hessian
matrix for the training samples, an image texture measure, a
local image patch, a Haar feature, HOG, SIFT, and a local
binary pattern.

4. The method of claim 1, wherein the machine learning
algorithm includes a random forests machine learning algo-
rithm.

5. The method of claim 1, wherein the structure classifier
includes a plurality of decision trees configured to process a
plurality of the subject image points, each decision tree is
organized as a plurality of branches and a plurality of nodes
to implement a plurality of decision rules, the nodes include
a plurality of internal nodes and a plurality of terminal
nodes, each internal node is configured to test an attribute of
a subject image point according to predefined criteria, each
branch corresponds to an outcome of the test, and each
terminal node holds a structure label for association with a
subject image point.

6. The method of claim 1, wherein the plurality of training
samples selected from the atlas image includes a plurality of
positive training samples that have been identified as
belonging to the structure of interest and a plurality of
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negative training samples that have been identified as not
belonging to the structure of interest.
7. The method of claim 6, wherein the number of positive
training samples substantially equals the number of negative
training samples.
8. The method of claim 2, wherein the region includes a
first region predetermined as belonging to the structure of
interest and a second region predetermined as not belonging
to the structure of interest, wherein the method further
includes randomly selecting a plurality of positive training
samples from the first region and randomly selecting a
plurality of negative samples from the second region.
9. The method of claim 2, wherein the region has an inner
part that is proximal to the contour of the structure of interest
and an outer part that is distal to the contour of the structure
of interest, wherein a greater number of training samples are
selected from the inner part than from the outer part.
10. The method of claim 1, wherein the predetermined
threshold distance is specified by a user.
11. An apparatus for training a classifier, the apparatus
comprising:
a memory device configured to store an atlas image
having at least one pre-identified structure of interest,
wherein the atlas image includes a plurality of image
data points;
a processor configured to:
select a plurality of training samples from the atlas
image, wherein the plurality of training samples
correspond to a subset of image data points located
within a threshold distance from a contour of the
structure of interest;

determine a set of image attributes associated with each
selected training sample; and

apply the selected training samples and the attributes
associated with the selected training samples to a
machine-learning algorithm to generate a structure
classifier, the structure classifier being configured to
determine a structure of interest in a subject image.

12. The apparatus of claim 11, wherein the processor is
further configured to identify a region surrounding the
contour of the structure of interest, and selecting the plural-
ity of training samples from the region, wherein boundaries
of the region are within the threshold distance from the
contour of the structure of interest.

13. The apparatus of claim 11, wherein the plurality of
training samples selected from the atlas image includes a
plurality of positive training samples that have been identi-
fied as belonging to the structure of interest and a plurality
of negative training samples that have been identified as not
belonging to the structure of interest.

14. The apparatus of claim 13, wherein the number of
positive training samples substantially equals the number of
negative training samples.

15. The apparatus of claim 11, wherein the threshold
distance is determined by a user, and wherein the apparatus
further includes an input device configured to allow the user
to specify the threshold distance.

16. The apparatus of claim 12, wherein the region has an
inner part that is proximal to the contour of the structure of
interest and an outer part that is distal to the contour of the
structure of interest, wherein a greater number of training
samples are selected from the inner part than from the outer
part.

17. A computer-readable medium having stored thereon
computer instructions, when executed by a processor, per-
forming a method for training a classifier, the method
comprising:
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selecting a plurality of training samples from an atlas
image having at least one pre-identified structure of
interest, wherein the atlas image includes plurality of
image data points, wherein the plurality of training
samples correspond to a subset of the image data points
located within a threshold distance from a contour of
the structure of interest;

determining a set of image attributes associated with each

selected training sample; and

applying, with the processor, the selected training samples

and the attributes associated with the selected training
samples to a machine-learning algorithm to generate a
structure classifier, the structure classifier being con-
figured to determine a structure of interest in a subject
image.

18. The computer-readable medium of claim 17, wherein
selecting a plurality of training samples further includes
identifying a region surrounding the contour of the structure
of interest, and selecting the plurality of training samples
from the region, wherein boundaries of the region are within
the threshold distance from the contour of the structure of
interest.

19. The computer-readable medium of claim 17, wherein
the plurality of training samples selected from the atlas
image includes a plurality of positive training samples that
have been identified as belonging to the structure of interest
and a plurality of negative training samples that have been
identified as not belonging to the structure of interest.

20. The computer-readable medium of claim 19, wherein
the number of positive training samples substantially equals
the number of negative training samples.
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